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A description of the high-density electron system in terms of 
bosons 

L G J van Dijk and G Vertogen 
Institute for Theoretical Physics, Catholic University. Toemmiveld, 6525 ED Nijmegen. The 
Netherlands 

Abstract. Tomomga’s idea of describing the one-dimensional jellium model in terms of bosons 
is adopted for the three-dimensional case. but worked out in a completely different way. An 
algorithm is given for the conshuction of a boson Hamiltonian that d e s  into account the full 
dynamics of the jellium madel at all densities. 

The algorithm is applied to a reduced fom of fhe jellium model, which has the same gmund 
state energy as the jellium model in the high-density limit The resulting boson Hamiltonian is 
compared with Sawada’s Hamiltonian, which also has this gmund mte energy in the limit of 
high density. Finally. the present boson formulalion is discussed briefly. 

1. Introduction 

The system of interacting electrons moving against a uniform background of neutralizing 
positive charge is known as the jellium model. Until now the ground state properties of 
the jellium model can only be calculated approximately except in the limiting cases of 
extremely high and low densities. 

Several ways of approach exist for dealing with the electron system. One of them 
is to reformulate this system in terms of bosons. The boson formulation of the one- 
dimensional model has been discussed by Tomonaga [I] .  His formulation holds in the 
highdensity limit, as then only scattering processes with small momentum transfer are 
imponant. The three-dimensional system has been discussed by Sawada in terms of a 
free boson Hamiltonian 121. His purpose was the justification of the ground state energy 
calculation by Gell-Mann and Brueckner [3], who summed an apparently divergent series 
of ring diagrams. That calculation, which is equivalent to the random phase approximation 
of Bohm and Pines [4], leads to the exact gmund state energy in the high-density limit 
Sawada’s Hamiltonian is the result of discarding all interaction terms that do not generate 
ring diagrams. Consequently Sawada’s boson description is only equivalent to the fermion 
description within the framework of perturbation theory. This means that Sawada’s three- 
dimensional approach is not analogous to Tomanaga’s formulation, as the latter one takes 
into account the full dynamics of the onedimensional system in the high-density limit. The 
results of Arponen and Pajanne [5 ] ,  who generalized Sawada’s Hamiltonian and obtained 
a boson Hamiltonian, which is non-Hermitian and of sixth order in the boson operators, 
support this conclusion. 

The purpose of the present paper is to obtain a Tomonaga-like boson formulation of the 
three-dimensional fermion system. In section 2 the algorithm is given for the construction 
of a boson Hamiltonian H B .  that takes into account the full dynamics of the jellium model 
at all densities. An explicit construction of HB appears impossible in general. In section 3 
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the given algorithm is applied to a reduced form of the jellium model, that allows an 
explicit construction and has the same ground state energy as the jellium model in the high- 
density limit. The resulting boson Hamiltonian is compared with Sawada's Hamiltonian. 
Unlike Sawada's expression the present one describes a fermion system and can therefore be 
considered as a three-dimensional analogue of Tomonaga's Hamiltonian. The significance 
of the present boson formulation is discussed in section 4. Finally it should be remarked 
that the present paper can be considered as a logical continuation of a previous treatise on 
the boson formulation of the low-density electmn system [6]. 
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2. The boson formulation 

The plane wave representation of the jellium model is given by the Hamiltonian 

1 
H = Z E k C L C k n  f ;i E' v(q)CLC~,~,CKt4, 'Ck-rc- ,  (2.1) 

ha q.k.k 
0.0 

where 

and 

h2k2 
2m 

6k = -. 
Here e and m are the charge and mass of an electron, respectively, and S2 denotes the volume 
of the system, that is thought to consist of 2N electrons. The operators c b  and CL describe 
the annihilation and creation of a fermion having wavevector k and spin U, respectively. 
The prime appearing in the summation over the momentum transfers q indicates that the 
q = 0 term is excluded in consequence of the homogeneous positively charged background. 

The first step of the present boson formulation for the jellium model concems the 
calculation of the matrix elements of the jellium model using the complete set of eigenstates 
of the kinetic energy operator appearing in (2.1). An eigenstate Im) of this set can be 
expressed as 

where IO), the filled Fermi sphere, is the ground state of the kinetic energy operator and kF 
denotes the radius of the Fermi sphere. The matrix elements can be easily calculated. The 
diagonal element (mlHlm)  is given by 

(2.6) 
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The off-diagonal element (mlHlm') is zero unless Im') is of the following form: 

I") = c&ce2r2 c&;~e~., Im) (2.7) 

where the creation and annihilation operators refer to four mutually different one-electron 
states. This is a direct consequence of the two-body nature of the interaction term in (2.1). 
The non-zero matrix element (mlHlm') is given by 

(mlHlm') = [ V ( t i  - t3)&,r;6r2r; - V(tz - e3)6,,;S,,,;l6e,+4,1+~. (2.8) 

Next the matrix elements are used as the guiding principle for the formulation of the 
jellium model in terms of a boson Hamiltonian H B .  In order to construct HB, each fermion 
state Im) is replaced by a corresponding boson state IrpA,,,). The set of boson states that 
corresponds with the complete set of fermion states is obtained by replacing each electron- 
hole pair c:+,,ck. with Ik + 91 > kF and Ikl < kF by the corresponding boson operator 
d&,(ku) .  The boson operators satisfy the commutation relations 

The replacement means that the fennion state Im) (2.4) corresponds with the boson state 

Iki1)wi +Pi1 -kF)d&,(kiUi))bAo) (2.10) 
k l  

(2.1 1) 

for all q, k, U' and U .  Note that the restrictions Iki I e k p  and Iki + qi I > kF in (2.10) 
are superfluous, as the operators d&,(ku) are defined for Ikl .c kF and Ik + qI > kF only. 
Consequently they will no longer be mentioned explicitly. 

Clearly the number of boson states that can be constructed in terms of the boson creation 
operator d&,(ku) and the vacuum state lqAo) exceeds by far the number of fermion states. 
For instance a boson state like 

IPCZ) = d ~ r , ( k ~ ~ ~ ) d , : , ( k ~ ~ ~ ) l ~ ~ o )  (2.12) 

IPBZ) = -dP,+k,+,, + (kzuz)d~+k2-klR(kiu1)IrPAo) (2.13) 

does not correspond with any fermion state, whereas a boson state like 

corresponds with the same fermion state as the boson state IqA2) defined in (2.10). For 
clarity the complete set of boson states is divided up into three subsets A ,  B and C .  Subset 
A consists of states IPA,,,) being in a one-to-one correspondence with the complete set of 
fermion states Im) (2.4). Subset B consists of those boson states Ipps,) that correspond with 
fermion states already taken into account by the states IPA,,,) (cf. 2.13). Finally subset C 
consists of boson states which do not correspond with any fermion state (cf. 2.12). 

Now the boson Hamiltonian HB is constructed by requiring 

(2.14) 
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for all fermion states Im) and lm'), and further 
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for all boson states of the respective subsets. The correctness of this procedure follows 
immediately from the form of the matrix representation of HB, M(H& on the complete set 
of boson states: 

(2.16) 

where MA is the matrix representation of HB on the subset A,  i.e. MA is identical to the 
matrix representation of the jellium model, and Msc is the matrix representation of H B  
on the subset of the remaining boson states. Consequentely the boson system as described 
by H B  is not equivalent with the jellium model but includes that model. The merit of the 
present formulation is the separation of fermion and non-fermion states. This means that 
the eigenvalues of the jellium model form a subset of all eigenvalues of HE. In this sense 
HB can be said to describe the jellium model. 

For constructional purposes HB is written as 

HB =U; + ~ , 2 +  AHB (2.17) 

where HA, H i  and AH8 are chosen such that 

( ( O A m l H B b A m )  = ( ( P A m l H A k ' A m )  

(VA~IHBIVA,,) = (0lAmIH,21rpAm,) m # m' 
( r p ~ m l f f ;  + Hil$'wm,) = -($'A,IAHBIv,~,) p = E .  C. (2.18) 

The construction of the terms H i  and H i  is given in appendix A. The remaining terms 
AHB, however, cannot be constructed explicitly in general. The reason is a lack of criterion 
for deciding whether a particular boson state belongs to subset A or 8 in the lower density 
case when interaction terms with large momentum transfer p are important. 

3. The high-density limit 

The boson Hamiltonian H E ,  which includes the full description of the jellium model at all 
densities, cannot be constructed explicitly due to the complexity of AHB as was mentioned 
in the previous section. The algorithm given in section 2, however, can be applied to 
simpler fermion systems, which allow an explicit description in terms of bosons. Here the 
algorithm of section 2 is applied to a reduced form HF of the jellium model, which has the 
same ground state energy as the jellium model in the high-density limit. 

The starting point of the present analysis is the following fermion Hamiltonian: 
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As shown by Sawada 121, HF has the ground state energy of the jellium model in the 
high-density limit 131. namely 

1 
where Eo is given in Rydberg and the dimensionless parameter r, is given by 

(3.3) 

Sawada's Hamiltonian Hs is obtained by simply replacing the fermion pair operator cLckn 
by the boson operator nEc (A.1) and the electron-hole pair C : + ~ ~ C ~  with Ikf  41 > kF and 
k < kF by the boson operator d&(ku), i.e. 

(3.4) 

Clearly HS does not describe a fermion system, as the eigenstates of Hs are linear 
combinations of states belonging to the subsets A.  8 and C. 

The fermion Hamiltonian I?F (3.1) still contains too many terms for the present purpose 
of describing the fermion system (3.1) in terms of bosons. Notably interaction terms with 
large momentum transfer q 2 kF, that do not contribute to the ground state energy in 
the high-density limit (3.2) as shown in appendix B, prevent an explicit description of the 
fermion system in terms of bosons. For that reason the algorithm of section 2 is not applied 
to I j F  itself but to a reduced form of H F  leaving out interaction terms with q 2 kF. This 
reduced form is the following fermion Hamiltonian: 

(3.5) x [(c-,._,,,c-k8d + Ckn,Ck'+~~' ) (Ck+qoCko + C-k,,C-k-qm)] 

where the double prime appearing in the second summation over q indicates that this 
summation is restricted to those terms satisfying 0 < q < r j ' 4 k ~  < 1q -t k + k'l. The 
restriction q < r,"4k~ < Iq + k' + kl must be imposed in order to obtain an explicit 
description of HF in terms of bosons, as shown in the following. The influence of this 
restriction on the ground state energy in the high-density limit (rs -+ 0) is negligible (see 
appendix B). 

The boson Hamiltonian HFB,  which describes the fermion system defined by (3.5). is 
now obtained from the fermion Hamiltonian HF by requiring 

+ + + + 



where 



A description of the high-denrity electron system in terms of bosons 2527 

The effect of AHFB(~) .  which must compensate matrix elements of the type 
(VA,IHFB(O)I~B~.), is an additional restriction on the summations in (3.9). This restriction 
can be phrased as follows: taking into account the term proportional to 

means discarding the term proportional to 

Such a restriction cannot be made mathematically explicit in general. In the present case, 
however, this problem does not apply as the restriction due to AHm(2) is already contained 
in the relatively simple restriction q < r;l4k~ < IQ + b + b’l, i.e. 

AHFB(~)  = 0. (3.11) 

It should be remarked here that (3.1 1) does not hold at lower densities, where interaction 
terms with momentum transfer q 2 kF become important for the ground state energy and a 
restriction q < r:14kp < I Q  + k + k’l cannot be imposed. 

The Hamiltonian Hm. given by (3.7). (3.9), (3.10) and (3.11), includes the full 
description of a reduced form of the jellium model with the same ground state energy 
as the jellium model in the high-density limit. In this sense HFB can be considered as a 
three-dimensional analogue of Tomonaga’s Hamiltonian for the one-dimensional electron 
system. 

It is interesting to compare HFB with Sawada’s Hamiltonian HS (3.4), which also leads 
to the exact ground state energy of the jellium model for r, + 0. The two Hamiltonians 
differ strongly from a fundamental point of view. The present Hamiltonian HFB is a boson 
formulation of the fermion system defined by (3.5) whereas Hs does not include a description 
of a fermion system at all, i.e. its meaning is unclear. 

4. Conclusions 

The purpose of the present paper is to describe the interacting electron system in terms 
of bosons. The present boson formulation consists of an algorithm for the construction 
of a boson Hamiltonian HB,  which includes a full description of the jellium model at all 
densities. An explicit construction has been presented for a reduced form of the jellium 
model with the same ground state energy as the jellium model in the high-density limit. The 
obtained Hamiltonian Hm has been compared with Sawada’s Hamiltonian Hs, which also 
gives the exact ground state energy of the jellium model for r, -+ 0. In contrast with Hm 
the Sawada Hamiltonian does not describe a fermion system. Consequently a full analysis of 
the high-density electron system in terms of HS is questionable from a fundamental point of 
view. Notably the conclusion cannot be sustained that the elementary excitations of HS do 
indeed correspond with the elementary excitations of the jellium model in the high-density 
limit. 

The present boson formulation has not lead to new numerical results nor to a boson 
Hamiltonian that seems promising for a calculation of the properties of the electron system 
at lower densities. At first sight the appearing Hamiltonian HB (2.17) seems an attractive 
starting-point. For i t  seems natural to neglect the very complicated term AHB and to 
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diagonalize the bilinear part of HA+Hi while accounting for the remaining terms of Hi+H; 
by means of a perturbation calculation. However, there is a hidden problem here. Namely, 
at lower densities interaction terms with larger momentum transfers become important. 
This means that a neglect of AH, can no longer be justified. Therefore such a perturbation 
procedure lacks a satisfactory systematics just as a perturbation calculation starting from 
Sawada’s Hamiltonian, i.e. the results of such a calculation are just as questionable. 

In summary. the significance of the present boson formulation lies in the fundamental 
sphere, not in the practical one. However, this does not mean that applications are excluded, 
e.g. a calculation of the electron-positron interactions as done previously by Arponen and 
Pajanne [9] using Sawada’s method. For the present the question has been raised and 
answered in which way the interacting electron system can be described in terms of bosons. 

L G J van Dijk and G Vertngen 

Appendix A 

The construction of the terms HA and Hi of the boson Hamiltonian HB (2.17) proceeds as 
follows. First HL is considered. In order to consbuct this term the following boson operator 
is introduced 

n!,, = e(kF - k )  + c ’ [ d & ( k  - qur)dqo(k - qu’) - d,$(ku)dqg.(ku)]. (A. I ) 

It can be shown that: 
W’ 

(1) the boson states are eigenstates of n L  and 
(2) nLlrpam) = m,Im). 

Consequently it holds: 
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The construction of the terms Hi@), i = 1 ,  . . . ,9 is straightforward. As an example the 
term H i ( I )  is constructed here. The translation of fermion states into corresponding boson 
states is facilitated by putting El = kl + 91, & = k2 + 9 2 ,  e, = ki + 9:. & = kl + 9; with 
(IC1 1. lk~( c kF. Then the states Im) and 1") as given by (2.4) and (2.7) can be expressed 
as follows: 

where the fermion operators refer to six mutually different fermion states and Im - 2) is 
given by 

x [ V @I - p ; ) d i ,  (ka )$ ,~ ' (k 'o ' )d~ ,  (ko)d&z ( k ' d )  
- V(k '+m - k - ~ ; ) d , : , ( k ~ ) d ~ , , ( k ' ~ ' ) d p ; , , ( k ~ ) d p ; , ( k ' ~ ' ) l  (A.9) 

where the primes appearing in the summations indicate that terms containing V ( 0 )  are 
excluded as well as that the boson operators must be such that the corresponding fermion 
operators are all different. Note further that the relevant matrix elements of Hi( 1) between 
the boson states of subset A are indeed all zero except for those pairs of states as given by 
(A.6). Consequently Hi(I) is correctly expressed by (A.9). 

The remaining terms of Hi(1) (A.3) can be constructed analogous to Hi(1). They are 
found to be 
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Hi(3) = E’ E’ [ V(q)d,+,(k‘u’)d,+,(ku)d,(k’u‘) 
q.p.p’.r k.k’.n.o’ 

- V(kz - ki)d~&-kZu (kzr)d,,(k;o‘)d,u,(k. ~ ) 1 8 p ‘ + k ~ . k ;  (A.13) 

Hi(6) = [HiWJ’ (A.14) 

H i ( 7 )  = 7 E’ IV(q)dfq“.(-k‘u’)dg+,(lco) 
1 

- 
i 

q,k.k’.n.n’ 

- V(q + k + k’)d?q,,d(-k’~)d&(k~’)] (A.15) 
= IH&’)I’ (A.16) 

Hi(9)  = E’ [V(q)d,f,.(k’u’)dq,(ku) - V(k - k’)d&(k’u’)dq,(ku‘)]. (A.17) 
q.k.k‘u.o’ 

The primes appearing in the summations indicate that the terms with V(0) are excluded 
as well as that the appearing boson operators must be such that the comesponding fermion 
operators are all different. 

Appendix B 

Consider the Hamiltonian I?;, which is obtained from I?p (3.1) by taking into account only 
those interaction terms with momentum transfer q c qo c< kF, where qo is some cut-off 
momentum transfer. In the high-density limit (rs -+ 0), the ground state energy of I?; can 
be expressed as follows [7,8]: 

x [ I n [ ~ + y ] - y ] ]  

where 

x(u) = ( 4 r , / ~ r ) ( 4 / 9 ~ ) ” ~ [ 1  - U  arctan(l/u)]. 

The integral over q can be easily calculated leading to 
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This result gives the exact ground state energy (3.2) in the limit r, + 0 provided that 
q i / k :  >> xmm. where xmar = x(0) = (4rs/r)(4/97r) ' /3  is the maximum value of the 
function x. This requirement is satisfied by choosing 40 = r, ' l4k~ as xm is proportional 
to r,. 

In order to show that HF (3.5) leads to the exact ground state energy (3.2) it must be 
argued now that the additional restriction Iq+k+ k'I > ri '4k~,  which is the only difference 
between HF and 2;. does not affect Eo up to order h r S ,  i.e. 

where 1%) is the ground state of g;. For that purpose the following function is introduced: 

F,dq,  k, k') = ;8(r:/'kF - q ) e ( k ~  - k)6'(kF - k')e(lk 4- 41 - kF).e(lk'+ QI - kF)V(Q) 
x [ ( % l [ C - ~ , - q ~ r C - L ' m '  + + c K ~ , c k , + q , ' l [ C ~ + , c k ,  + + C?k,C-k-qmllWJ)].  (B.5) 

Using (3 .1)  together with the definition of l$ and using (3.2) and (3.5) it appears that in 
the limit r, + 0 

E' F,,,(q, k, k') = 2N(0.06221nrs) 
k.K.q.w.o' 

Consequently & and HF have the same ground state energy in the high-density limit if 

(B.7) 

The denominator in the left-hand side of (B.7) can be expressed as follows in the limit 
r, -+ 0 

where x .  y and q are defined by 

k * q = kqx 
k' . q = k'qy 

k . IC' = kk'[xy - 4 5 , / q c o s q ]  

qo = k ~ r i / ~  and C is some constant. It should be remarked that the function F is independent 
of q. The reason being that each function value FCa,(q, k, k') can be interpreted as a sum 
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over ring diagrams. The numerator in (B.7) is also of the form (BA), but now the following 
restriction must be imposed 

qz + kZ + k"+ 2qkx + 2qk'y + 2kk'Ixy - ~ ~ , f ~ c o s q ]  < k;r:''. (B.10) 

It can easily be checked that for r, + 0, where it holds that k - kF, k' - kF and q are of 
the order of r:'4kf or smaller, the restriction (B.lO) leads to: 

L G J van Dijk and G Vertogen 

I - ;e2<cos(p < I (B. l l )  

i.e. 

O < V < &  (B.12) 

where e is of the order of rj'4. From (B.8) and (8 .12)  it follows directly that the requirement 
(B.7) is satisfied, i.e. & and HF have the same ground state energy in the high-density 
limit. 
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